K-ary Regression Forests for Continuous Pose and Direction Estimation

نویسندگان

  • Kota Hara
  • Rama Chellappa
چکیده

In this work, we propose a novel K-ary splitting method for regression trees and incorporate it into the regression forest framework. Unlike standard binary splitting, where the splitting rule is selected from a predefined set of binary splitting rules via trial-and-error, the proposed K-ary splitting method first finds clusters of the training data which at least locally minimize the empirical loss without considering the input space. Then splitting rules which preserve the found clusters as much as possible are determined by casting the problem into a multiclass classification problem. Consequently, our K-ary splitting method enjoys more freedom in choosing the splitting rules, resulting in more efficient tree structures. In addition to the Euclidean target space, we present a variant which can naturally deal with a circular target space by the proper use of circular statistics. We apply the regression forest employing our K-ary splitting to head pose estimation (Euclidean target space) and car direction estimation (circular target space) and demonstrate that the proposed method significantly outperforms state-of-the-art methods as well as regression forests based on standard binary splitting. The code will be available at our website.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic head pose estimation with Synchronized sub manifold embedding and Random Regression Forests

Head pose can indicate the eye-gaze direction and face toward which is an important part of human motion estimation and understanding. Due to physical factors of the camera, shooting environment, as well as the appearance change of humanity, the head pose estimation becomes a challenging task. Synchronization sub manifold embedding can find the internal structure of nonlinear data for nonlinear...

متن کامل

Real-Time Head Pose Estimation Using Random Regression Forests

Automatic head pose estimation is useful in human computer interaction and biometric recognition. However, it is a very challenging problem. To achieve robust for head pose estimation, a novel method based on depth images is proposed in this paper. The bilateral symmetry of face is utilized to design a discriminative integral slice feature, which is presented as a 3D vector from the geometric c...

متن کامل

All together now: Simultaneous Detection and Continuous Pose Estimation using a Hough Forest with Probabilistic Locally Enhanced Voting

Simultaneous object detection and pose estimation is a challenging task in computer vision. In this paper, we tackle the problem using Hough Forests. Unlike most methods in the literature, we focus on the problem of continuous pose estimation. Moreover, we aim for a probabilistic output. We first introduce a new pose purity criterion for splitting a node during the forest training. Second, we p...

متن کامل

Depth-Enhanced Hough Forests for Object-Class Detection and Continuous Pose Estimation

Much work on the detection and pose estimation of objects in the robotics context focused on object instances. We propose a novel approach that detects object classes and finds the pose of the detected objects in RGB-D images. Our method is based on Hough forests, a variant of random decision and regression trees that categorize pixels and vote for 3D object position and orientation. It makes e...

متن کامل

Continous Head Pose Estimation using Random Regression Forests

Head pose is a rich visual cue that finds great interest in the field of human robot interaction (HRI) and for video surveillance applications. Previous attempts at solving this problem have often proposed solutions formulated in a classification setting. Furthermore, strong assumptions on illumination and scale in an occlusion-free environment have usually been made. We propose a regression so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1312.6430  شماره 

صفحات  -

تاریخ انتشار 2013